
Fast Range Image Segmentation and Smoothing using
Approximate Surface Reconstruction and Region Growing

Dirk Holz and Sven Behnke

Abstract— Decomposing sensory measurements into relevant
parts is a fundamental prerequisite for solving complex tasks,
e.g., in the field of mobile manipulation in domestic environ-
ments. In this paper, we present a fast approach to surface
reconstruction in range images by means of approximate
polygonal meshing. The obtained local surface information
and neighborhoods are then used to 1) smooth the underlying
measurements, and 2) segment the image into planar regions
and other geometric primitives. An evaluation using publicly
available data sets shows that our approach does not rank
behind state-of-the-art algorithms while allowing to process
range images at high frame rates.

I. INTRODUCTION

As robots and autonomous systems move away from
laboratory setups towards complex real-world scenarios, both
the perception capabilities of these systems and their abilities
to acquire and model semantic information must become
more powerful. A key issue is the extraction of semantic
information from sensory data and its decomposition into
parts of interest that are relevant for the tasks of the robot. For
mobile manipulation in domestic environments, for example,
the perception of objects and their surroundings is a key
prerequisite. A common approach [1] in 3D perception is to

1) detect horizontal support planes,
2) extract and cluster points on top of these planes, and
3) perform further processing, e.g., recognizing, classify-

ing or tracking of the found clusters.
Here, one of the fundamental problems is to segment the 3D
data into planes and other geometric primitives—or regions
of local surface continuity in general.

In this paper, we address the problem of segmenting
range images and organized point clouds in real-time on
domestic service robots. The central idea of our approach
is to approximately reconstruct the surface and segment
the range image by growing regions using the resulting
local mesh neighborhoods. By means of easily exchangeable
components, our generalized region growing approach allows
for different region models (e.g. planes) that are segmented in
the data. We present models for segmenting planes, regions
of local surface continuity, and simple geometric primitives
at high frame rates (see Fig. 1).

Furthermore, we use the same mesh neighborhoods to
1) efficiently compute local surface normals and curvature
estimates, as well as 2) smooth both the 3D measurements
and the computed normals using a bilateral filter.

This research has been partially funded by the FP7 ICT-2007.2.2 project
ECHORD (grant agreement 231143) experiment ActReMa.

D. Holz and S. Behnke are with the Autonomous Intelligent Systems
Group, University of Bonn, Germany. Contact: dirk.holz@ieee.org.

(a) Input cloud (b) Constructed triangle mesh

(c) Segmentation (d) Polygonalization

Fig. 1. Example of surface reconstruction and (plane) segmentation on
a RGB-D point cloud: (a) input cloud; (b) constructed mesh; (c) result
of segmenting planes in the mesh (red points are assigned to multiple
planes); (d) polygonalization as a collection of alpha shapes. Using the
Microsoft Kinect camera at a resolution of 160×120, we can compute full
polygonalizations with roughly 30Hz on a standard dual-core notebook.

This paper is organized as follows: After giving a brief
overview on related work in range image and 3D plane
segmentation in Section II, we present our approach in
Section III and discuss how to detect geometric primitives
using initial segmentations. We use multiple data sets for
evaluating the efficiency and robustness of our approach and
summarize the results in Section IV.

II. RELATED WORK

Research on computer and robot vision produced a wide
variety of approaches to range image segmentation—and
plane segmentation in particular. Hoover et al. [2] compiled
a survey and performed an evaluation of early work. Three
different types of approaches can be distinguished according
to the underlying working principle: methods using random
sample consensus (RANSAC), 3D Hough transforms, and
region growing. In the context of segmenting 3D laser range
scans, another popular approach is to first detect lines in
planar cuts, and to merge neighboring lines into local plane
patches (see Vosselman et al. [3] for an overview).

dirk
Typewriter
In Proceedings of the 12th International Conference on Intelligent Autonomous Systems (IAS), Jeju Island, Korea, 2012



A. Segmentation based on Sample Consensus

RANSAC-based approaches try to find models for geo-
metric primitives that best explain a set of points and the
set of inliers supporting it. For segmenting a complete range
image, Lee et al. [4] sequentially remove inliers from the
original data set, and continue the segmentation with the
residual points. Silva et al. [5] first identify connected regions
and apply RANSAC region-wise. Gotardo et al. [6] compute
an edge map for pre-segmentation and use a variant based
on the M-estimator sample consensus (MSAC) to fit model
parameters.

Another efficient solution to segmenting even unorganized
point clouds and detecting simple geometric primitives such
as planes, cylinders and spheres has been proposed by Schn-
abel et al. [7]. They decompose unorganized point clouds
using an octree subdivision and apply RANSAC only to
subsets of the original point cloud.

In previous work [8], we adapted the perception scheme
from Section I as well as the techniques from [1] and [7],
and made them applicable to the measurements of time-of-
fight (ToF) cameras. We presented techniques to cope with
the specific error sources of the cameras, and to speed up
processing by exploiting the image-like data organization.
After detecting the most dominant plane, we applied the
octree-based primitive detection of Schnabel et al. [7] only to
already extracted and segmented points above that plane. In
[9], we further speeded up the segmentation process by using
integral images for computing local surface normals more
efficiently, and using the index neighborhood underlying the
3D data to extract and track segments of points and object
candidates, respectively. The overall approach is applicable
in real time on a Microsoft Kinect camera and has been used
for real-time object tracking and grasp planning [10].

B. Hough-based Plane Segmentation

The Hough transform is the de-facto standard for finding
lines and circles in 2D images. Various extensions to 3D
exist that try to find, respectively, planes and maxima in
histograms over the possible space of plane orientations and
distances. For an overview, and an evaluation for Hough-
based segmentation approaches, we refer to the works of
Vosselman et al. [3] and Borrmann et al. [11].

RANSAC- and Hough-based segmentation share a com-
mon disadvantage. Points belonging to the same segment
do not necessarily lie on connected components. Both ap-
proaches will merge plane segments if they share a common
orientation and distance to the origin. In addition, Hough-
based segmentation may suffer from discretization effects.

In [9], we present a fast plane segmentation approach
that uses a similar parameter space as the Hough transform.
We pre-cluster points and segment planes first in normal
space and then, for each cluster, in distance space to obtain
individual planes. We compensate for discretization effects
by conducting a post-processing step in which neighboring
segments are merged if their parameters do not considerably
deviate. Still, unconnected planar patches may get merged
into the same cluster.

C. Segmentation using Region Growing

The idea of region growing-based segmentation is to ex-
ploit the image-like data structure. Hähnel et al. [12] connect
neighboring points in 3D laser range scans to a mesh-
like structure. The scans are then segmented recursively by
merging connected patches that are likely to lie on the same
planar surface. Poppinga et al. [13] apply the same approach
to Time-of-Flight cameras and re-formulate the algorithm in
an incremental fashion. They grow planar regions by adding
neighboring points whose distance to the plane lies below a
threshold. Centroid and covariance matrix for estimating the
plane parameters are thereby incrementally updated.

Here, we follow a similar approach. Instead of incremen-
tally computing the covariance matrix, however, we compute
the normals for all points beforehand and simply average
local surface normals to obtain an estimate of the plane’s
normal. That is, we only store and incrementally update the
centroids in both Cartesian and normal space.

Other popular region growing-approaches to range image
segmentation make use of local surface curvature. Regions
are grown until points with a considerably larger curvature
are reached. Just like Gotardo et al. [6] for RANSAC-
based segmentation, Harati et al. [14], first compute an edge
map to find connected regions of local surface continuity.
Rabbani et al. [15] approximate local surface curvature by
first fitting planar segments to local point neighborhoods and
then computing, for each point, the distance to that plane.
Recently, Cupec et al. [16] followed a similar approach. They
first apply 2.5D Delaunay triangulation on a range image to
obtain an initial triangular mesh and then use the maximum
distance of an examined point to all triangles in a region to
determine whether or not the point is added.

Here, we deduce a surface reconstruction directly from
the image-like data structure, and use the local ring neigh-
borhood around vertices to 1) efficiently compute local
surface normals and curvature estimates, and 2) efficiently
smooth the depth measurements using a bilateral filter. Our
framework allows for using different types of models for
region growing, including the approaches of Poppinga et al.
[13], Harati et al. [14], Rabbani et al. [15] and Cupec et al.
[16], as well as our fast approximation (see Section III).

III. FAST MESH CONSTRUCTION AND SEGMENTATION

In this section, we describe our approaches to approximate
surface reconstruction and segmentation based on region
growing. The overall processing pipeline is composed of the
following components:

1) Deduce approximate mesh from image neighborhood.
2) Use mesh neighborhood to compute approximate local

surface normals and curvature estimates.
3) Bilateral filtering to smooth both points and normals.
4) Segmentation based on region growing.

All components described in the above list use the same fixed
neighborhoods. These neighborhoods come either directly
from the mesh structure or can be pre-computed using a
variety of search trees, if the input data is unstructured.



(a) Quad (b) Adaptive (c) Left cut (d) Right cut

Fig. 2. Fast approximate meshing using a quad mesh (a) and different
triangulations (b-d). Compared to the adaptive approach (b), triangulations
using only left cuts (c) or only right cuts (d) can be obtained slightly faster.

A. Exploiting Structure for Fast Approximate Meshing

The central idea of our surface reconstruction approxima-
tion is to deduce the desired mesh structure directly from
the image-like organization of measurements. In fact, the
algorithms presented in the following could easily be applied
on local index neighborhoods in range images. However, an
approximate mesh allows for 1) applying a wide variety of
sophisticated algorithms from the field of computer graphics,
as well as for storing certain edge weights, e.g., the difference
vectors for integral image-based normal computation from
our previous work [9].

We traverse a given range image R once and check for
every point pi = R(u,v):
• if R(u,v) and its neighbors R(u,v+1), R(u+1,v+1),

and R(u+ 1,v) (in the next row and the next column)
are valid depth measurements, as well as

• if all edges between R(u,v) and these three neighbors
are not occluded.

The first check is necessary because of the structure in the
sensory data that we exploit. If the sensor cannot acquire a
valid depth measurement for a certain pixel, it has to store
an invalid one, in order to keep the structure organized.

The latter occlusion checks can be easily done by examin-
ing the difference vectors between pi and its three neighbors.
If it falls into a common line of sight with the viewpoint
from where the measurements have been taken, one of the
underlying surfaces occludes the other. The condition for the
validity of an edge between point pi and its neighbor p j can
be formulated as

valid =
((∣∣pi ·p j

∣∣≤ cosεθ

)
∧
(
‖pi−pj‖2 ≤ ε

2
d
))

, (1)

where εθ and εd denote maximum angular and length toler-
ances, respectively.

If all checks are passed, R(u,v) and its neighbors are
used to extend the so far built mesh. Otherwise, holes arise.
Referring to Fig. 2, we distinguish four types of meshes:

1) Quad meshes are formed by connecting pixel R(u,v) to
R(u,v+1), R(u+1,v+1), and R(u+1,v).

2) Fixed left and right cut meshes are formed by cutting
quads either from top right to bottom left (left cut) or
from top left to bottom right (right cut).

3) Adaptive triangulation cuts the quad along the diagonal
that has a smaller length.

For triangulations, a single invalid neighbor causes that only
one triangle is added. After construction, we simplify the
resulting mesh by removing all vertices that are not used in
any polygon. An example triangulation is shown in Fig. 3(b).

B. Fast Computation of Surface Normals and Curvature

We compute the local surface normal ni for point pi as
the weighted average of the plane normals of the faces sur-
rounding pi. Using the cross product between the difference
vectors of the bounding vertices to compute the face normals,
and choosing the weights to be proportional to the area of
triangles, removes the need of normalizing the face normals
beforehand. Thus, we can obtain ni as:

ni =
∑

NT
j=0(p j,a−p j,b)× (p j,a−p j,c)

‖∑
Ni
j=0(p j,a−p j,b)× (p j,a−p j,c)‖

, (2)

where p j,a, p j,b and p j,c form triangle j. In the actual
implementation, we simply iterate over the faces, compute
the difference vectors and their cross product, and add them
to the normals of the involved points. Finally, we normalize
all point normals at once. An example for computed local
surface normals (color coded) can be seen in Fig. 3(b).

C. Bilateral Filtering

Naturally, sensor measurements are affected by noise.
Since this noise can hinder further processing like segmen-
tation, we apply a bilateral filter for smoothing both the
points and their normals while preserving edges in the sensed
geometric structures. Again, instead of searching, we directly
extract a point’s neighborhood from the mesh. That is, we
filter both a point pi and its normal ni over its 1-ring-
neighborhood Ni, i.e., all points that are directly connected
to pi by an edge in the mesh:

pi = ∑
j∈Ni

wi jpi/ ∑
j∈Ni

wi j, ni = ∑
j∈Ni

wi jni/ ∑
j∈Ni

wi j, (3)

wi j = e‖pi−pj‖︸ ︷︷ ︸
distance term

e‖ni−n j‖1︸ ︷︷ ︸
normal term

e(Ii−I j)/cI︸ ︷︷ ︸
intensity term

, (4)

where the optional intensity term is only evaluated for col-
ored point clouds and range images where also an intensity
image is available. The normalization constant cI is used to
scale the intensity differences to lie in the interval [0,1]. An
example of filtering an input mesh can be seen in Fig. 3(c).

D. Region Growing-based Segmentation

Despite the generalization over different neighborhood
searches and region models, the implementation of our
segmentation algorithm does not considerably deviate from
other region growing algorithms in the literature. Given a set
of seed points (and a priority queue of seeds),
Outer loop, until all points are processed:
1) we iteratively select the next seed point,
2) initialize the region model of interest, and
3) put the seed point onto the empty processing queue.

Inner loop, while the processing queue is not empty:
4) We take the next point from the processing queue,
5) check its compatibility with the region model,
6) and add it in case of compatibility.
7) We add the point’s neighbors to the processing queue

(again, only if they’re compatible).



(a) Input cloud (b) Initial mesh (c) Filtered mesh (d) Segmented mesh

Fig. 3. Approximate surface reconstruction, bilateral filtering and segmentation on an example point cloud (a). The filtered mesh (c) is considerably
smoother than the initially approximated mesh (b) and allows for cleanly segmenting regions of local surface continuity (d). The meshes in (b) and (c) are
colored w.r.t. the vertices’ normal orientation (mapped to RGB space, object-space normal map). In (d) segments are colored randomly.

E. Different Region Models for Segmentation

We have encapsulated the processing steps (2) initializa-
tion, (5) point compatibility, (6) model update, and (7) neigh-
bor compatibility in exchangeable region models allowing to
configure and control the behavior of the segmentation.

We have implemented several region models for approxi-
mate plane segmentation using local surface normals, as well
as for segmenting regions of local surface continuity as a pre-
segmentation for further processing. Both are detailed in the
following. In addition, we added models that reproduce the
behavior of segmentation algorithms found in the literature.

1) Approximate Plane Segmentation: For plane segmen-
tation, we initialize the centroid and the normal of the
region model using the seed point and its normal (instead
of computing them using an initial set of points as in the
approach of Poppinga et al. [13]). In order to determine the
compatibility of a point pi to the model, we simply check
the angle between its normal ni and the normal in the plane
model, as well as pi’s distance to the plane. For updating the
model w.r.t. pi, we incrementally update the plane’s centroid,
but instead of incrementally updating a covariance matrix to
derive a plane normal from it, we incrementally update its
centroid in normal space. That is, by pre-computing the sur-
face normals on the mesh neighborhood, and approximating
the plane normal by averaging over point normals, we can
reduce the number of computations considerably.

In order to obtain full polygonalizations as the one shown
in Fig. 1(d), we 1) compute the convex or concave hulls (us-
ing alpha shapes) for all planar patches, and, if a triangulation
is required, 2) decompose them again using ear clipping.

2) Extracting Locally Smooth Surfaces: For detecting
geometric primitives, we need a rough pre-segmentation of
the scene. This can easily be accomplished within the neigh-
bor compatibility check of the models by, e.g., examining
changes in the local surface curvature or comparing a point’s
surface normal with either the region’s mean surface normal
or the surface normal of the seed point. A typical result of
applying a segmentation using the latter model is shown
in Fig. 3(d). Points on the same physical (locally smooth)
surface end up in the same segment.

F. Detecting Geometric Primitives

For every locally smooth segment, we try to find the
geometric primitive that best explains the underlying point
set. Whereas we can directly compute a least squares plane
fit to all the points in a segment, we use RANSAC to find

(a) Example 1 (b) Example 2

Fig. 4. Examples of detecting planes (yellow), cylinders (cyan) and spheres
(magenta). Points and polygons belonging to multiple segments are colored
red. All points are projected onto the found models.

the best sphere and cylinder model. Here, the computational
efficiency of our approach comes from applying RANSAC
only if the computed planar model does not fully explain
the segment. Typical results of applying the rough pre-
segmentation and primitive detection are shown in Fig. 4.

Since we still stick to the RANSAC-based primitive de-
tection for spheres and cylinders, we focus the experimental
evaluation to plane segments directly obtainable from region
segmentation and extracted using our approximate model.

IV. EXPERIMENTS AND RESULTS

We evaluate the correctness and efficiency of our approach
using two publicly available data sets for which ground truth
plane segmentations are available: the SegComp data set
from Hoover et al. [2], and the recently published Kinect
data set by Oehler et al. [17]. For the evaluation, we follow
(and refer to) the scheme of [2]. Measured runtimes of
the individual processing steps show that our approach can
process range images at high frame rates—at a resolution of
160×120 in real-time with 30Hz (see Table I). Compared the
approach of Oehler et al. [17], we obtain better segmentation
results (see Table II) while being a faster by a factor of 4
(they need >100ms for 160×120, and >2s for 640×480).

A. Estimating a Simple Isotropic Noise Model

For all the aforementioned region models, parameters like,
for instance, the distance to the model and the deviation
between surface normals play an important role. Whereas
the latter can be neglected after applying the bilateral filter,
the distance to the model is a parameter that is crucial for
the quality of the segmentation. It resembles the amount of
noise hindering a measurement to lie on the ideal model.

In order to obtain a rough estimate of the amount of
noise at a given point, we use a simple isotropic noise



model. As suggested in [18], we assume Gaussian noise
N (0,σ2) and use a simple quadratic polynomial of distance
to determine σ , since noise in range sensors usually increases
quadratically with the measured distance. Since the primary
sensor used in our work is a Microsoft Kinect camera, we
have computed a simple error model for this sensor. In
10 different scenes (ranging from scenes with only close
range measurements to views of wide open space), we have
collected 100 range images each. For each of the locations,
we compute the mean and standard deviation per pixel and
perform a least squares fit to find appropriate coefficients for
the quadratic model; resulting in:

σ(d) = 0.00263d2−0.00518d +0.00752. (5)

For the range images in the SegComp data set, that are
slightly more affected by noise, we simply set 2σ(d) as the
maximally allowed deviation of a point to its region model.

B. Plane Segmentation using the SegComp Data Sets

Typical results of applying the presented approximate
plane segmentation on range images and organized point
clouds can be seen in Figures 5 and 6. Considering our goal
of obtaining a fast decomposition into dominant planes and
other objects of interest, the obtained results are more than
satisfying. Moreover, as can be seen in the detailed compar-
ison in Table II, the proposed method does not considerably
rank behind state-of-the-art range image segmentation ap-
proaches, while providing very efficient means to compute—
within milliseconds—rough scene segmentations.

On the ABW data set [2], our approximate plane seg-
mentation approach tends to over-segment the range image.
This is caused by a special characteristic of the used camera
that is not explicitly handled here resulting in inconsistent
normal orientations. Besides over-segmented planar patches,
our approach correctly detects 80% of the planes.

In the PERCEPTRON data set, no special sensor charac-
teristics cause errors and our approach yields similar results
as the work by Gotardo et al. [6]. Referring to Table II,
over-segmentations are rare for our approach. Instead, a
considerable amount of ground truth planes is not perceived.
These planes are formed by only a small number of points
and are neglected here due a minimum region cardinality that
we use to eliminate very small planar patches.

We also evaluated our approach using the recently pub-
lished Kinect data set by Oehler et al. [17]. This data set com-
prises two different sets of point clouds with corresponding
ground truth segmentations – one for plane segmentation and
one for cylinder segmentation. Naturally, we obtain a larger
amount of over-segmentations here, since larger cylinders in
the planes data set are labeled as noise while unconnected
regions belonging to a single plane are labeled as one seg-
ment. However, visually inspecting the segmentation results
reveals that all dominant planes are reliably segmented.

V. CONCLUSIONS AND FUTURE WORK

We have presented a simple, yet efficient approach to
segmenting range images and organized point clouds. Using

TABLE I
MEASURED RUNTIMES* FOR THE INDIVIDUAL PROCESSING STEPS

Resolution 160×120 320×240 640×480
Mesh Construction 11ms 45ms 188ms
Computing Normals 2ms 7ms 33ms
Smoothing/Filtering 10ms 38ms 155ms
(Plane) Segmentation 6ms 30ms 126ms
Overall Frequency ≈ 35Hz ≈ 8Hz ≈ 2Hz
*Measured over 1000 runs on an Intel Core 2 DUO 2.26GHz
(no parallelization), approximate plane segmentation (III-E.1)
of a mesh constructed using adaptive triangulation (III-A).

an approximate polygonal reconstruction directly deduced
from the image-like structure, we are able to efficiently
compute point features such as local surface normals, and
to smooth the measured data using a bilateral filter.

Experimental evaluation has shown that our approach does
not considerably rank behind state-of-the-art range image
segmentation techniques. However, regarding its compu-
tational complexity, it exploits several simplifications and
approximations finally making the overall segmentation (and
primitive detection) algorithm run within milliseconds on
point clouds acquired by typical RGB-D cameras.

It remains a matter of future work to exploit the extracted
information about segmented planar patches (and geometric
primitives) in further processing steps like registration.

Implementations of all components presented in this paper
are (or are going to be) publicly available within the open
source Point Cloud Library PCL1.

REFERENCES

[1] R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz, “Close-
range scene segmentation and reconstruction of 3D point cloud maps
for mobile manipulation in human environments,” in Proc. of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), St. Louis, MO, USA, 2009, pp. 1–6.

[2] A. Hoover, G. Jean-Baptiste, X. Jiang, P. J. Flynn, H. Bunke,
D. B. Goldgof, K. Bowyer, D. W. Eggert, A. Fitzgibbon, and R. B.
Fisher, “An experimental comparison of range image segmentation
algorithms,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 18, pp. 673–689, 1996.

[3] G. Vosselman, B. G. H. Gorte, G. Sithole, and T. Rabbani, “Recog-
nising structure in laser scanner point clouds,” Information Sciences,
vol. 46, no. 8, pp. 1–6, 2004.

[4] K.-M. Lee, P. Meer, and R.-H. Park, “Robust adaptive segmentation of
range images,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 20, pp. 200–205, 1998.

[5] L. Silva, O. Bellon, and P. Gotardo, “A global-to-local approach for
robust range image segmentation,” in Proc. of the Int. Conference on
Image Processing (ICIP), Rochester, NY, USA, 2002, pp. 773–776.

[6] P. Gotardo, O. Bellon, and L. Silva, “Range image segmentation by
surface extraction using an improved robust estimator,” in Proc. of
the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Madison, WI, USA, 2003, pp. 33–38.

[7] R. Schnabel, R. Wahl, and R. Klein, “Efficient RANSAC for point-
cloud shape detection,” Computer Graphics Forum, vol. 26, no. 2, pp.
214–226, 2007.

[8] D. Holz, R. Schnabel, D. Droeschel, J. Stückler, and S. Behnke,
“Towards semantic scene analysis with time-of-flight cameras,” in
Proc. of the 14th RoboCup International Symposium, Singapore, 2010.

[9] D. Holz, S. Holzer, R. B. Rusu, and S. Behnke, “Real-time plane
segmentation using RGB-D cameras,” in Proc. of the 15th RoboCup
International Symposium, Istanbul, Turkey, 2011.

1The latest stable release of the Point Cloud Library PCL is available at
http://pointclouds.org.



(a) 10 / 14, 4 misses (b) 18 / 24, 6 misses (c) 10 / 13, 2 over, 1 miss (d) 12 / 13, 1 over (e) 22 / 22

Fig. 5. Plane segmentation using the SegComp PERCEPTRON training data set (segments randomly colored). In total, 109 of 126 planes were correctly
segmented (approx. 86.5%). Not correctly found are very small plane segments, e.g., the inner parts of the objects in (a) and (b). In addition, some planes
are oversegmented due to noise, e.g., the support plane in (c). The estimated plane normals deviate from ground truth by roughly (2.5±1.6)◦.

(a) 10 / 11 (b) 9 / 10 (c) 9 / 9 (d) 5 / 8, 3 over (e) 5 / 9, 2 over, 2 miss

Fig. 6. Approximate plane segmentation using (a-c) the SegComp ABW data set [2], and (d-e) the data set by Oehler et al. [17]. ABW: On average,
12.2 planes out of 15.2 planes are correctly segmented, while roughly two planes per image are oversegmented. Kinect: for the data set from [17] over-
segmentations are primarily caused by detecting planes on the surface of cylinders or in small regions not marked as beloning to planes in ground truth.
Overall, roughly 58% of planes are correctly segmented (80% pixel overlap), while Oehler et al. only achieve 54.9% (at 51% pixel overalp, see [17]).

TABLE II
DETAILED BENCHMARKING RESULTS ON THE SEGCOMP DATA SETS FOR PLANE SEGMENTATION

Approach Regions in correctly orientation over- under- missed noise
ground truth detected deviation segmented segmented (not detected) (non-existent)

SegComp ABW data set (30 test images) by Hoover et al. [2], assuming 80% pixel overlap as in [6]
USF[6] 15.2 12.7 (83.5%) 1.6◦ 0.2 0.1 2.1 1.2

WSU [6] 15.2 9.7 (63.8%) 1.6◦ 0.5 0.2 4.5 2.2
UB [6] 15.2 12.8 (84.2%) 1.3◦ 0.5 0.1 1.7 2.1
UE [6] 15.2 13.4 (88.1%) 1.6◦ 0.4 0.2 1.1 0.8
OU [6] 15.2 9.8 (64.4%) – 0.2 0.4 4.4 3.2
PPU [6] 15.2 6.8 (44.7%) – 0.1 2.1 3.4 2.0
UA [6] 15.2 4.9 (32.2%) – 0.3 2.2 3.6 3.2

UFPR [6] 15.2 13.0 (85.5%) 1.5◦ 0.5 0.1 1.6 1.4
Oehler et al. [17] 15.2 11.1 (73.0%) 1.4◦ 0.2 0.7 2.2 0.8

Ours 15.2 12.2 (80.1%) 1.9◦ 1.8 0.1 0.9 1.3
SegComp PERCEPTRON data set (30 test images) by Hoover et al. [2], assuming 80% pixel overlap as in [6]

USF [6] 14.6 8.9 (60.9%) 2.7 0.4 0.0 5.3 3.6
WSU [6] 14.6 5.9 (40.4%) 3.3 0.5 0.6 6.7 4.8
UB [6] 14.6 9.6 (65.7%) 3.1 0.6 0.1 4.2 2.8
UE [6] 14.6 10.0 (68.4%) 2.6 0.2 0.3 3.8 2.1

UFPR [6] 14.6 11.0 (75.3%) 2.5 0.3 0.1 3.0 2.5
Oehler et al. [17] 14.6 7.4 (50.1%) 5.2 0.3 0.4 6.2 3.9

Ours 14.6 11.0 (75.3%) 2.6 0.4 0.2 2.7 0.3

[10] J. Stückler, R. Steffens, D. Holz, and S. Behnke, “Real-time 3D per-
ception and efficient grasp planning for everyday manipulation tasks,”
in Proc. of the European Conference on Mobile Robots (ECMR),
Örebro, Sweden, 2011, pp. 177–182.

[11] D. Borrmann, J. Elseberg, K. Lingemann, and A. Nuechter, “The 3D
Hough transform for plane detection in point clouds: A review and a
new accumulator design,” 3D Research, vol. 2, pp. 1–13, 2011.

[12] D. Hähnel, W. Burgard, and S. Thrun, “Learning compact 3D models
of indoor and outdoor environments with a mobile robot,” Robotics
and Autonomous Systems, vol. 44, no. 1, pp. 15–27, 2003.

[13] J. Poppinga, N. Vaskevicius, A. Birk, and K. Pathak, “Fast plane
detection and polygonalization in noisy 3D range images,” in Proc.
of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Nice, France, 2008, pp. 3378–3383.

[14] A. Harati, S. Gächter, and R. Siegwart, “Fast range image segmentation
for indoor 3D-SLAM,” in Proc. of the IFAC Symposium on Intelligent

Autonomous Vehicles (IAV), Toulouse, France, 2006.
[15] T. Rabbani, F. van den Heuvel, and G. Vosselman, “Segmentation

of point clouds using smoothness constraint,” International Archives
of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, vol. 36, pp. 248–253, 2006.

[16] R. Cupec, E. K. Nyarko, and D. Filko, “Fast 2.5D mesh segmentation
to approximately convex surfaces,” in Proc. of the European Confer-
ence on Mobile Robots (ECMR), Örebro, Sweden, 2011, pp. 49–54.

[17] B. Oehler, J. Stückler, J. Welle, D. Schulz, and S. Behnke, “Efficient
multi-resolution plane segmentation of 3D point clouds,” in Proc. of
the International Conference on Intelligent Robotics and Applications
(ICIRA), Aachen, Germany, 2011, pp. 145–156.

[18] D. Anderson, H. Herman, and A. Kelly, “Experimental characterization
of commercial flash ladar devices,” in International Conference of
Sensing and Technology, Palmerston North, New Zealand, 2005.


